

ACWQ Austín Canopy & Water Quality

Final Report: Austin Tree-Canopy Resource, Phase ||

Urban Forestry Program and Urban Forestry Board, City of Austin, Texas

Spring 2012, Geography 4427, Texas State University May 4, 2012

Summary

- The canopy of the tree is not only vital to the tree, but also the environment around it.
- City of Austin's Urban Forestry Program approached the team at Austin Canopy and Water Quality about this relationship.
- As GIS analysts and environmental researchers the team possesses the knowledge and skills needed to complete there request.

Purpose

- The purpose of ACWQ'S work was to determine the percentage of tree canopy/impervious cover for the EII reaches defined by the City of Austin.
- The team was also tasked with finding the percentage of canopy/impervious cover for the City of Austin's creek line buffer layer as well as a 300ft buffer.
- The ultimate goal of the project was to relate canopy/impervious cover to water quality within the EII Reaches and provide recommendations to planting areas.

Scope

• Study area included 126 EII reaches within 76 watersheds.

- Our area of analysis was limited to 55 reaches and 3 watersheds that contained water quality sample sites at or within 0.5 miles of the intersect of the downstream creek line and reach boundary.
- Sample sites selected contained data from 2011 as well as data on Turbidity, Water Temperature, and Total Inorganic Nitrogen levels.

Map 1.3. Area of Analysis: 55 Watersheds and 3 Watersheds

Literature Review

Water Quality
Lowell Hughes
Canopy Coverage
Ashley Zavala

Impervious CoverEli Pruitt

Water Quality

•How trees benefit water quality
•Interception
•The benefits of trees

Canopy Coverage

Remove pollution from the nation's waterways
Urban development
Benefits of Tree Canopy

Impervious Cover

- Impervious cover is any surface that does not allow rainfall to be absorbed or infiltrated through it.
- •With the addition of impervious cover there is a loss of vegetation.
- Impervious cover can have a negative impact on water quality.

Data

- ESRI ArcGIS, a geographic information system, was used to evaluate selected benefits provided by the tree canopy in the City of Austin, Texas.
- ACWQ primary objective was to explore how water quality is related to the presence of tree canopy coverage with in the designated EII watershed reaches. Esri ArcMap will allow the team to calculate the percentage of tree canopy and impervious cover within the designated EII watershed reaches

Data

Table 1. Data

Data Set	Source						
Tree Canopy	City of Austin (COA)						
Watershed	City of Austin (COA)						
Creek lines	City of Austin (COA)						
County Lines	City of Austin (COA)						
City boundary	City of Austin (COA)						
Receiving Waters	City of Austin (COA)						
Ell REACH Watersheds	COA Urban Forestry Program						
Digital Elevation Model (DEM)	COA Urban Forestry Program						
Hillshade raster layer	Barton Springs Edwards Aquifer Conservation District (BSEACD)						
Water Quality Monitoring Stations	Texas Commission on Environmental Quality (TCEQ)						
Impervious Cover raster layer	United States Geological Survey (USGS)						
Land Cover raster layer	United States Geological Survey (USGS)						
National Hydrography dataset	United States Geological Survey (USGS)						

- The first step in the analysis was to examine the available datasets and interpret what attributes and features were present.
- Since a stream network did not exist we will were unable to cumulatively calculate percentages upstream from sample sites.

- Select those EII reaches that contain water quality sample sites at or within 0.5 miles from the drainage point and contained 3 water quality parameters
- Ran sample sites through City of Austin's online water quality database.
- Imported the results into Microsoft Excel in order to sort and clean data
- Final results were 55 sample sites that had data from 2011 on water temperature, turbidity and nitrogen level
- This data was joined to sampling site layer based on the sampling site number field in the layer and spreadsheet

Table 2. Sample Site and Water Quality Data

Table													
: - 2	t • 🏪 🌄	M 🖓	¢										
SampleSites	;_WQData_Jo	oin											
Reach	SiteNo	Phase	SiteName	State83x	State83y	WshedNo WATERSHED	SiteNo_1	SITE_TYPE	MEDIUM	Temperatur	Nitrate	Turbidity 🔺	
BAR1	879	1 E	arton Creek Between Dams Above Pool	3104986	10068924	1 Barton Creek	879	Stream	Surface Water	28.48	0.203	18.96 (
BEE1	319	2 E	ee Creek @ Lake Austin	3097420	10083120	11 Bee Creek	319	Stream	Surface Water	12.43	3.36	0.34 (
BEE2	322	2 E	ee Creek @ Road Runner Road	3093880	10084333	11 Bee Creek	322	Stream	Surface Water	12.67	2.37	2.24 (
BEE3	1104	2 E	ee Creek @ Loop 360	3088077	10083483	11 Bee Creek	1104	Stream	Surface Water	15.67	2.31	1.37 (
BLU1	180	1 E	Ilunn Creek @ Riverside Drive	3115069	10064410	15 Blunn Creek	180	Stream	Surface Water	27.69	0.008	5.52 (
BLU3	362	1 E	Blunn Creek @ Long Bow (Preserve at Little Bridge)	3112962	10058181	15 Blunn Creek	362	Stream	Surface Water	23.12	0.649	3.73 (
BMK1	851	1 E	Buttermilk Creek @ Little Walnut Creek	3133581	10092440	16 Buttermilk Branch	851	Stream	Surface Water	28.84	0.08	1.62 (
BMK3	3861	1 E	Buttermilk Creek @ Victory Christian Center	3127475	10096168	16 Buttermilk Branch	3861	Stream	Surface Water	24.45	1.96	1.1 (
BOG1	493	1 N	lorth Boggy Creek @ Delwau Lane	3137720	10069350	17 Boggy Creek	493	Stream	Surface Water	29.93	0.008	10.66 (
BOG2	837	1 N	lorth Boggy Creek @ Nile Street	3123204	10070615	17 Boggy Creek	837	Stream	Surface Water	25.5	0.022	2.43 (
BOG3	2754	1 N	lorth Boggy Creek @ Manor Rd	3125001	10077413	17 Boggy Creek	2754	Stream	Surface Water	21.79	0.0145	2.15 (
BRVV1	1224	2 E	ear Creek (West) @ Fritz Hughes Park Road	3060817	10111903	20 Bear Creek West	1224	Stream	Surface Water	8.82	1.19	0.37 (
BUL3	349	2 E	Juli Creek Above Tributary 7 (Franklin)	3091358	10125201	7 Bull Creek	349	Stream	Surface Water	16.02	0.632	0.76 (
BOL4	1164	21	ributary 5 Below Hanks Tract Property Line	3088985	10128017	7 Bull Creek	1164	Stream	Surface Water	13.36	0.712	0.52 (
CAR1	1094	20	arson Creek @ Shady Spring Subdivision	3138944	10056294	23 Carson Creek	1094	Stream	Surface Water	11.48	1.84	1.15 (
	850	1 0	Vest Country Club Creek @ East Ottorf St	3119645	10056029	120 Country Club West	850	Stream	Surface Water	23.22	0.013	3.81 (
	1048	20	common Ford Tributary in Common Ford Metro Park	3067136	10095252	125 Commons Ford Creek	1048	Stream	Surface Water	12.08	2.06	0.37 (
	1222	20	uernavaca Creek @ River Hills Road	3079906	10095902	126 Cuernavaca Creek	1222	Stream	Surface Water	12.39	4.21	0.21	
DRE2	1211	2 L	rry Creek @ Pearce Road	3155188	10034171	41 Dry Creek East	1211	Stream	Surface Water	8.31	0.471	15.35 (
	1108	2 L	ry Creek (North) @ Mt Bonnel Rd	3103129	10095349	42 Dry Creek North	1108	Stream	Surface Water	9.9	0.368	1.39 (
E AND	1109	2 4	ry Creek (North) @ FM 2222	3105950	10097042	42 Dry Creek North	1109	Stream	Surface Water	14.07	0.052	0.62 (
	1220	20	anes creek @ camp crait Road	3032493	10074320	4 East Bouldin Crook	1100	Stream	Surface Water	10.52	0.853	0.42 (
EB02	110	1 5	ast Bouldin Creek @ Fost Oak	3110939	10000370	4 East Bouldin Creek	110	Stream	Surface Water	24.47	0.000	2.13	
EOR4	176	1 5	ast Bouldin Greek @ Clancrest Drive	3120201	100000000	9 East Branch	176	Streem	Surface Water	19.90	0.024	3.72 (
	1191	1 0	Silleland Creek @ Mest Parsons St	3169717	10003534	48 Gilleland Creek	1191	Stream	Surface Water	24.43	14.26	13.75 (
	1194	1 1	Vest Gilleland Creek @ Cameron Road	3157566	10113776	48 Gilleland Creek	1194	Stream	Surface Water	24.45	0.016	41.45 (
HRS2	1199	1 -	arris Branch Creek @ Crystal Bend Drive	3147301	10121975	59 Harris Branch	1199	Stream	Surface Water	19.97	1.77	3.58 (
L BA1	77	21	ittle Barton Creek @ Barton Creek (I BC)	3055834	10079591	63 Little Barton Creek	77	Stream	Surface Water	10.23	0.867	0.00 (
LBA2	1114	2 L	ittle Barton Creek @ Great Divide Dr	3046194	10082733	63 Little Barton Creek	1114	Stream	Surface Water	10.56	1.75	0.59 (
LKC1	1098	2 L	ake Creek @ Sugar Berry Cove	3141258	10160810	70 Lake Creek	1098	Stream	Surface Water	13.57	0.639	2.28 (
LKC2	3978	2 L	ake Creek @ Shadowbrook Club	3123694	10152317	70 Lake Creek	3978	Stream	Surface Water	6.57	1.17	7.43 (
LKC3	1100	2 L	ake Creek Below Meadowheath Drive	3103341	10142101	70 Lake Creek	1100	Stream	Surface Water	10.71	3.99	0.82	
LWA1	634	1 L	ittle Walnut Creek @ US183	3139287	10081771	6 Little Walnut Creek	634	Stream	Surface Water	26.61	0.0125	5.77 (
LWA3	3860	1 L	ittle Walnut Creek @ Georgian Dr	3127653	10102320	6 Little Walnut Creek	3860	Stream	Surface Water	29.83	0.017	1.02 (
LWA4	838	1 L	ittle Walnut Creek @ Golden Meadow Rd	3123733	10111951	6 Little Walnut Creek	838	Stream	Surface Water	23.69	800.0	2.6 (
MAR1	231	2 N	farble Creek Above Onion Creek (M1)	3117424	10034668	76 Marble Creek	231	Stream	Surface Water	7.97	0.658	1.14 (
PAN1	1223	2 P	anther Hollow Creek @ Big View Road	3075458	10103031	83 Panther Hollow	1223	Stream	Surface Water	10.61	3.46	0.76 (💌	
												Þ	
L			I to the terr officers										
A Start	2									* [⊃ (" a1	11:51 PM 4/28/2012	

Digital elevation model (DEM)
ACWQ creates a 300ft centerline buffer
Clip the tree canopy and impervious cover data
A new "double-type" field was added
Field calculator

Figure 1. Feature Class Clip Model

- The impervious cover raster file was reclassified, by grouping entries. The non-imperious cover was labeled "0" and the impervious cover labeled "1".
- The impervious cover raster file was then converted into a vector file, which consisted of non-impervious and impervious features.
- The non-impervious features were deleted.
- Resulting in a feature class consisting of only of impervious cover.

- Subsequent maps were developed utilizing this new information.
- Manipulating the symbology of the attributes as they relate to tree canopy and impervious cover percentages.
- This allowed ACWQ to analyze any trends that might exist.
- ACWQ was able to transform maps depicting areas that contain high or low tree canopy and impervious cover. The water quality data was analyzed in conjunction with the tree canopy and impervious cover data and no obvious trend was noticed.

- BEE Creek Watershed
 - BEE 1 = 66%
 - BEE 2 = 69%
- West Bull Creek Watershed
 - WBL 1 = 64%
 - WBL 2 = 64%

Map 2.1. Percent of Tree Canopy; EII Reaches

- Little Walnut Creek Watershed
 - LWA 4 = 92%
- Fort Branch Watershed
 - FOR 4 = 84%
- Buttermilk Branch Watershed
 - BMK 3 = 84%
- Tannehill Branch Watershed
 - TAN 3 = 82%

Map 3.1. Percent of Impervious Cover; EII Reaches

- (TAN 1 EII Reach) Tannehill Branch Watershed
 - 24% EII Reach is Tree Canopy.
 - 29% Tree Canopy in EII Reach is within WPO Creek Buffer.
 - 71% Tree Canopy in EII Reach is within 300 ft. Creek Buffer.

Austin Tree-Canopy Resource, Phase II Tannehill Branch, Canopy Within WPO Buffer

Map 2.9. Tree Canopy in Tannehill Branch and WPO Buffer

- (TAN 1 EII Reach) Tannehill Branch Watershed
 - 62% EII Reach is Impervious Cover.
 - 11% Impervious Cover in EII Reach is within WPO Creek Buffer.
 - 30% Impervious Cover in EII Reach is within 300 ft. Creek Buffer.

Map 3.5. Impervious Cover in Tannehill Branch Watershed

Discussion

• The team was able to successfully calculate percentages for canopy/impervious cover.

• No relationship found between water quality and tree canopy/impervious cover.

Limitations

•Data provided

•Lack of stream network

Recommendations

•Creation of stream network

•More water quality sampling

•Continued Reasearch

Final Deliverables

- 1. CD's
 - All Data
 - Metadata
 - Microsoft Power Point Presentation
 - Proposal, Progress, and Final Reports
- 2. Website
- 3. Final Report
 - Data
 - Maps
 - Metadata
 - References
- 4. Instructions on how to use the CD (readme file)
- 5. Professional Poster to be displayed in Evans Liberal Arts Building

Conclusions

• Overall the goals of the project were met

• GIS was essential in completion of project

• It our belief that further research will allow a relationship to be created between tree canopy/impervious cover and water quality.

Questions?

References

- American Forests. 2000.*Trees Help Cities Meet Clean Water Regulations*. American Forests. Alliance for Community Trees, Washington, DC. http://actrees.org/files/Research/treeshelpcities.pdf. Last accessed 24 April 2012.
- Delaware Sea Grant College Program 2005. *Delaware NEMO Guide to Natural Resource Based Planning Chapter 2 Impervious Cover*. Delaware NEMO Program, Newark and Lewes, Delaware. http://www.nemo.udel.edu/manual/Chap2Web.pdf. Last accessed 20 April 2012.
- E. Gregory McPherson, Klaus I. Scott, et al. January 2000 "Tree Guidelines for Coastal Southern California Communities" by the Western Center for Urban Forest Research and Education USDA Forest Service, Pacific Southwest Research Station.
- Author Unknown, (No date of publication) (found article online on 2/11/12), "Benefits of Trees"

 by The City of San Diego, Urban Forestry website <u>http://www.sandiego.gov/street-div/stre</u>
- Author Unknown, 2004. Agroforestry "Working Trees for Water Quality" by The USDA National Agroforestry Center (NAC).
- Author Unknown, March 1996, "Water Quality Issue Brief" by the USDA Natural Resources Conservation Service - website -<u>http://www.nrcs,usda.gov/wps/portal/nrcs/detailfull/national/water/quality/?&cid=nrcs143_01088</u> <u>1#role</u>